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Abstract

Neural nets can provide a user with the ability to train a system to accomplish a
task. The net learns from the training pairs, and stores these relationships. The
net provides a method to generalize an output based on the nearness to all of the
trained inputs. This works well even in where the inputs are noisy or distorted.

* This is a study of a back propagation net. Neural nets degrade gracefully as the
input deterioates or gets farther and farther from the trained input. Hidden layers
allow the net to store more complicated relationships. These relationships may
well be something other than what the user thinks is the best or most obvious.
This relationship is stored as connection strengths. The net applies an activation
function to the weighted inputs at each node and then passes that information to
the next node. This study shows how well the back propagation net accomplished
the tasks of recognizing alphabetic characters.
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* Chapter 1

Introduction

S

The purpose of this paper is to describe the research and findings of a

* study on neural nets. The research was undertaken to learn more about a personal

interest. The goals of this research were a deeper understanding of neural nets,

suggestions to improve the nets that were tested, and a foundation for future

research. As a topic, I found neural nets to be extremely interesting. These nets,

although not a new concept, are, for the most part, not thoroughly understood.

They have the potential to open a new look at computing and the way problems

are solved. This study looked into a group of neural nets developed by Rumelhart
40

and McClelland, as part of their Parallel Distributed Processing series.

This study will determine the effects of adjusting basic parameters and

0 characteristics. In the forefront of our consideration are training, speed, and

accuracy. Neural nets have to be trained. [low much training does it take to

get to a reasonable proficiency? What should we accept as a reasonable level of

performance? low do you make the tradeoffs? What things should be traded and

what should not be traded. The testing was designed to let the nets decide what

, p ,



connections were important. Is it possible to tune these connections afterward to

improve speed or performance? Neural nets degrade gracefully, but how robust

are they?

* Computers are getting faster and faster. This will allow for more nodes in

the same amount of training or processing time. The simulations were designed

to be simple and flexible at the cost of efficiency. It is still important to look at

speed as it relates to the effects of changes, and how one net runs against another.

Is bigger really better in a neural net? We will look at all of these questions in

the chapters that follow. There will also be a general discussion of neural nets.

* This paper is organized into four parts. It will provide some background in-

formation, explain the methodology for aquiring the data, discuss the significance

of the results and problems, offer possible improvements in the implementation,

and suggest areas for follow on work to continue this study. Chapter 2 is a general

overview of net characteristics and strategy. Chapter 3 defines the specific type of

net used, as well as the particulars of each net that was tested. Also discussed are

the procedures used and justification of assumptions as appropriate. In Chapter

4 are the results of all of the testing and the problems that arose in the midst of

testing. Finally, there is a summary and follow-on studies that I think will further

help expand the potential of neural nets in Chapter 5.

0
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* Chapter 2

0 Why a Neural Net?

S

Why is there even an interest in neural nets? McCulloch and Pitts first

discussed this idea in the 1940's. Minsky built a hardwired net that learned back

in the 50's [14]. Nets were alive and well in the 60's. However, they were found to

not be more than a novel idea for simpler problems, and interest in them waned.

At that time, there were a lot things they would not do. It was not thought at that

time that neural nets would open any new doors. Why then this resurgence in a

5 dead issue? We should be headed to new frontiers in research. Still there is this

question of how can we get computers to do certain mental tasks as well as a five-

year-old [4]. Tasks such as pattern recognition, speech recognition, information

* retrieval, and visual perception [18] are done daily by children in seconds, but

may take a computer much, much longer - if the computer can do it at all. Some

tasks even stump the supercomputer [9].

Neural nets can provide an important tool in finding general solutions or in

3
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finding solutions with noisy, distorted or incomplete inputs [11]. The net derives

a relationship mathematically. The relationship does not have to be one that

the user knows to exist. The function of the net is to find a relationship. The

regularity detector is only given inputs. It then has to determine the similar parts,

and whether the input is similar to the trained patterns.

A neural net is not given step-by-step instructions on how to solve a prob-

lem like other systems. It goes out and finds a solution. The net itself determines

what is important. The system may even overlook relationships that are known

to exist and find new ones. The knowledge is stored in the collective weights of

the system, and those weights are not unique [21]. The system will probably find

a slightly different solution each time it is trained. In life, different people see

relationships in a set of objects from different perspectives, likewise neural nets

can find different relationships. A neural net can use this to find outputs even in

S the face of noisy or distorted inputs.

How would a computer determine if a vector of 128 bits represents one

letter out of a set of 26. With neural nets there may be 20-30% of the bits that

are not like the computer expects them. How long would it take to make this

determination? What would the output look like? This is especially relevant

when the form of the output is directly related to the closeness of the input to the

learned patterns. The pattern in question may be equally close to several other

patterns. The neural net simply multiplies and sums its way from the inputs to

the output. This task may require enormous time for large scale problem on a

0 normal system, but will be performed quite directly with a neural net.

The idea for neural nets is to try to work in ways similar of the brain [20].

The brain is composed of very simple cells, passing simple messages to a lot of

other cells, that collectively accomplish miracles. The human brain, with 1011

4



neurons, can only accomplish about 100 steps in one second. The step refers,

loosely, to computer operation type steps. At this slow speed it does things that

computers have yet to do [17].

• Neural nets have a lot to offer. One of the most important, is u.ie ability of

the net to generalize an output based on its training. It will find the similarities

between the tested pattern and all of the trained patterns. The net can fill in

data such as demographic information or some physical characteristics based on

the other data entered.

In the case of pattern matching it can create an output for something it

* was not trained on. In one study that encoded family relationships, it actually

internally represented the characteristics 'old' and 'Italian' that were never even

mentioned [4]. The net finds relationships that may not be obvious on the surface.

0 Graceful degradation is when something starts to go down in performance

or accuracy, but does not lose it all at once. Given poor inputs, whether from

noise or distortion, the resulting output will be close to the trained output. On a

* standard computer system, testing of a pattern would be a Boolean result. Either

it is or it isn't the pattern. It might give a quantitative measure, but has little

way to give a specific output, that is generalized over large number of trained

* patterns. However, the net adds the shades of grey that the comprise the real

world. The net will also give some value to the fitness of the output to those of

the training set.

5
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2.1 Basic Form

0 A neural net is a series of nodes, connections, and weights, that when

properly trained can solve problems inspite of noisy inputs or incomplete data.

The knowledge is stored in a distributed fashion in the connections between the

• nodes in the form of weights. Adjustment of the weights in the local connection

produces learning in the global sense for the net [4]. The net takes a set of inputs

and calculates an appropriate output based on its training. Figure 2.1 shows the

general flow of information. The net multiplies the inputs by a weight stored at

each connection. This product is then summed over all of the other connections

at that node.

net inputi = Z(activationj * weightsij) (2.1)

outputi = fi(net inputi3 ) (2.2)

Equation 2.1 shows the simplest form. That equation does not account for

the activation function. Equation 2.2 shows how the activation function comes

* into play. For each node j that sends information to i, there is an associated

weight. The inputs to i from all j are multiplied by the weight on the connection

from j to i These are then summed for all j, to give you the net input to i.

The activation function is then applied to the net input. Activation functions are

discussed in the following section. The process continues for all inputs and nodes

down to the output level. The weights are generally derived from the training

process, however they may be computed directly. The process to compute the

weights may well be tedious for anything more than the simplest applications.

6



inputs outputs

0

* Figure 2.1: Basic data flow.

There are a number of different mechanisms on which the net can be op-

* erated. The implementation may be found in different forms. One company has

built the net from hardware [7]. This net is made from VLSI chips on a card

that plugs into an expansion slot on a personal computer. It can recognize hand

0 written numbers. Most of the time software simulations are used that can be

modified more readily than hardware. Looking to the future, we can expect to

see neural nets in optical technology[l], molecular computing, and field comput-

* ers [13]. Whatever the medium, the process is rather straight forward - that of

summing weighted inputs through the net to produce an output.

Inputs to a net might represent any number of things, such as image pat-

terns, sensor data (heat, seismic, pressure, etc), radar signals, weather data, and

7
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audio/video signals. The outputs generally range from -1 to +1. Large numbers

will often be represented by numbers that are scaled to fit the interval. Inputs and

weights may be constrained to be positive, negative, zero, continuous, or discrete.

For the nets used in this project, all inputs, outputs, and weights, are continuous

between -1 and 1. Nets also may have a variety of connection strategies with

which to pass information between levels and between nodes on a level.

2.2 Types of nets by activation functions

Nets are characterized by their different methods for determining there

output. The output is a function of the sum of the weighted inputs. This function

may be anything you wish, but is normally of the types linear, linear threshold,

or logistic (sigmoid).

The linear function (Fig. 2.2) is a straight line function applying some

constant to the sum of the net inputs to a node . The activation of a unit is

directly proportional to the net inputs. Given an activation, the node multiplies

by a slope, add an intercept, and send its output on to the next node. Linear

functions are not used much because any layers of hidden units may be rolled back

into one layer. Therefore the power of hidden units is lost. The power of the net

* to internalize a representation is reduced.

Another type of activation function is the linear threshold function

(Fig. 2.3). These functions are constant up to some threshhold at which time

they act in a linear fashion. These functions help to make up for the short fall of

strictly linear nets. The hidden units give the ability to store some representation

of the data. Without hidden units, it would be basically all input and output.
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The logistic or sigmoid function is similar to the function on the right

(above) except that it is a continuous function. The function is defined in equa-

tion 2.3.

01
outputj = - e) (2.3)

The equation came about as a realization of the need for a continuous

function similar to the linear threshhold. The ability to use derivatives of the

activation function are important to the back propagation net. That net is used

exclusively in this project.

2.3 Training the net

To train the net, inputs and outputs are loaded into their respective areas.

The net then determines a difference between the calculated output and the target

output. The basic form of learning adjusts the weights relative to the difference

between the target and the actual output (Equ. 2.4, 2.5). The learning rate is a

constant of proportionality. The rule for back propagation nets is different in that

it includes the derivative of the activation function.

* delta, = learning rate * (targeti - activations) (2.4)

deltai, = f;(netu * Z-(deltaik * weightsk)) (2.5)
k

This difference may be propagated back through the net in a number of

different ways. We will look briefly at the different types of training functions,

10
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paying particular attention to back propagation. In the back propagation net,

the error from the higher unit is carried down to the lower unit which assigns the

change in its weights as a portion of the error from above.

* The simplest form merely increments or decrements the weights by a pre-

determined amount, based on the difference between the calculated output and

the target. If the output is greater than the target, then all of the weights are

decremented by a specific amount. How the amount is determined, gives way

to the different methods for training the net. The amount may be preset, or

calculated by any number of methods. The Hebbian learning rule multiplies the

activation by the weight, and then by a learning rate parameter (Equ. 2.6).

delta, = activationi * outputj * learning rate (2.6)

2.4 Other characteristics

In addition to activation function, and training, there are other character-

istics of nets such as feedback, connectivity, and number of levels to consider in

designing your net. Each of these will be addressed in the following paragraphs.

In most nets the connections carry inputs from a lower unit to the next

higher level. Feedback occurs when the higher level is allowed to send its out-

put back to a lower level. This is most often seen in auto associator nets while

completing the pattern. The feedback helps strengthen the partial pattern in the

layer below. This way, at each pass through, the inputs are closer to the completed

pattern.

This is also necessary when some level of semantic understanding is desired.

11
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Very often understanding the context has a lot to do in determining the words

and phonemes at a lower level. As words are beginning to be activated, the

overall meaning is also being formed at a higher level. If a word supports the

overall meaning it is reinforced with feedback, otherwise it is inhibited. Feedback
0

provides the necessary intermediate information to assist the net in finding a

solution.

Since the training process is computationally intensive for large nets, it is

necessary to determine the net configuration that best defines the problem. The

fewer connections the less processing time that is required for each learning or

testing cycle. Making this determination can be a very difficult process. Part of

this study includes whether increasing the number of levels improves performance.

This will be discussed in the section on results. Increasing the number of connec-

tions, or the levels will increase the complexity of the net and the time required

to cycle through the training. Increasing the number of nodes increasea the float-

ing point multiplications in proportion to the number of connections each node

has. A fully connected net that increases the number of nodes by n will increase

* computation by an order of n2 . It may, however, be beneficial and necessary in

the final running of the net to include all of the connections. This allows the net

the most flexibility in determining the internal representation.

2.5 Current/future applications

This section addresses general ideas of current research. It is only intended

to give a flavor for the kinds of studies being done. Pattern recognition is probably

the most common use of neural nets. Nets can learn different types of patterns. By

12
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patterns, you could mean a pattern of audio/video signals or other types of sensor

input. It should be stressed that the nets can handle more than visual patterns.

The net doesn't know the difference. For the net, a number is a number. For the

time being we will discuss visual patterns of pixel images. Difficulties arise when

0 trying to make the net recognize patterns that are not in the normal orientation

or size. One such study has achieved good results in picking numbers when several

may be present [6]. It cycles through picking the strongest first, and then following

•0 up with the rest. In that study, the patterns were scaled to different sizes and not

placed in the center of the image area.

Another area of interest within the pattern arena is in edge detection. Of-

ten, it is hard to identify a pattern until you separate the pattern from background

and other interferences. Once the edges are detected, those edges can be inputs to

a net that identifies the object. Humans identify animals by their specific parts,

0 such as a leg, foot, wings, etc. Once parts are identified, it is easier to see the rest

of an object, and identify that object.

Speech understanding is another hot and very difficult topic. Abig problem

is that no two people speak exactly the same. Even the same person does not

always say the same words with the same tone and inflection. Having a net that

can identify words is not sufficient, since many words have similar spellings and

0 pronunciation, but different meanings. The net must in the end apply some con-

textual reasoning to the words it has identified. This goes back to the importance

of feedback.

One project also takes written material and finds the phonemes that make

up words. The net is good even to the point of words that are unusual or are

pronounced differently than those with similar spellings. The phonemes are then

used as input into a speech synthesizer [4].

13
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The net's ability to determine unseen relationships would make it an ex-

cellent ool for economic forecasts. What would be better than a neural model

that is designed to determine relationships and internalizing them? This would be

especially interesting, since no one really knows exactly how the economic system

works. The model may have difficulty predicting a catastrophic event, such as

a crash. There may not be enough information for the net to learn all of the

causal relationships. There is a net that runs financial data for a loan company

* to determine whether a person is a good loan risk [19]. The net was trained with

240,000 actual case histories of good and bad loans. The system was then tested

with 30,000 other case histories. The system improved profits by 12%.

Neural nets have also made their way into robotics. There the net is used

to control an arm that to grasp a cylinder in space [12]. The net was taught how

to move the arm. The net then controls the three motors that move the arm. The

arm was accurate to within 40.

14
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* Chapter 3

Testing Procedure

3.1 Terms, abbreviations, and notation

input pattern - 128 bit vector that forms an alphabetic character when placed

into a 16x8 matrix.

output pattern - vector of 128 floating point numbers between -1 and 1, that

40 represent the solution of the net.

target pattern - 128 bit vector that forms the block symbol that the net re-

sponds with when the net recognizes a character.

pss - pattern sum of squares. The difference between the output of the net and

the target summed up over the 128 locations for one pattern.

tss - total sum of the squares for all of the patterns in a group.

15

0 E MOMMEMN



epoch - training cycle where all of the patterns in a group are entered into the

net. The cycle includes calculating the output, and adjusting the weights.

level - number of 128-node connections that make up the net. Net 2, for example,

has 2 levels of connections - one from input to the hidden units and another

from the hidden units to the output units. For level 3 and 4 there is an

additional designation of 'out'. Where the added level widens the middle

level instead of making it deeper.

group - the number of pattern/target pairs used in training or testing. Patterns

are grouped into 2, 4, 6, 8, 10, 12, or 14 patterns. Higher level addresses

* more nodes and deeper, where larger applies to group size.

input unit - units that receive the input or testing patterns from a source outside

of the net.

output unit - units whose activations represent the solution of the net.

hidden unit - units that are neither input nor output. Units that are not directly

reached by things external to the net.

notation - The following format explains from where certain outputs were ob-

tained. The labels tell which level net, the maximum value of weights that

* were zeroed, and the percentage of distortion of the input pattern. They

are seen throughout this paper without further amplification.

0
net level zeroed weights percentage distorted

2 15 20

zeroed weights that were < = ±1- .15
0

percentage 20% of the bits of the input pattern were flipped
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3.2 Net description

* The implementation used for this project was the back propagation model

developed by McClelland and Rumelhart [161 as part of a series of neural net

models. The reference [16] provides source code in C, on 51" floppy disks (DOS

* formatted).

The net is fully connected from one level to the next. This allows the net the

most flexibility in solving the solution. The net will determine which connections

* are needed and set the weights on those connections accordingly. In this way, the

net internalizes the relationships. Connections that are not important are near

zero. Those that negatively affect the outcome are given large negative values.

* Important connections are large positive values.

The tests were run on similar nets, but with different sizes and structures.

Each level has 128 nodes (Fig. 3.1). The 'out' levels added nodes to the middle

* hidden layer. Actually, the 'out' levels are a level 2, but for testing purposes are

the same size as the level 3 or 4 nets. All other increases add depth to the overall

net by adding a new hidden level. Hidden units are those that give the net more

* power than a simple single level net. All of those neurons that are not inputs or

outputs are the hidden units.

The patterns fo~in a 16x8 matrix as pixels for an alphabetic character. The

patterns are created by a series of O's and l's to fill in the shape of a printed letter.

The simulation uses '**' to represent l's for output. In the charts, each location is

2 characters long. The number, whether one or two digits, represents the output

* at that location multiplied by 100. All output values are within the range [-1,1].

17
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* level configuration total
input hidden output nodes

1 128 128 256
2 128 128 128 384
3 128 128 128 128 512
3out 128 256 128 512
4 128 128 128 128 128 640
4out 128 384 128 640

Figure 3.1: Number of nodes in levels tested.

Figure 3.2 gives some examples of input patterns. The complete set can found in

the appendix. The last pattern is checkered to give the system a different type

pattern to deal with, and to demonstrate the flexibility of the neural net. There

is also a blank pattern.

* The targets are six 8x8 block patterns (Figure 3.3). These six blocks are

oriented in the upper or lower region of the 16x8 pattern. In addition to these 12,

there is a blank target and checkered pattern, for a total of 14 targets. The blocks

* are designed to be sufficiently different that they may be identified, even when

moderately deformed. The targets also are intended to make full use of the entire

target space area, and not overly emphasize any particular area of the pattern

space. As in the input patterns, one pattern was blank, and another checkered to

see how the net would react to an unusual output. The checkered output pattern

is the reverse of the checkered input pattern. Different size groups were used to

see how the nets reacted over a range of difficulty. The groups range in size from

2 to 14 patterns.

The next figure (Fig. 3.4) shows the density of individual elements in the

* target space. From this picture we would hope to get some idea as to any unusual

18
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0

0

00 0 0 0 0 0 0 0 0.********* 00
0 0 0 0 0 0 0 0 0*********

0 0 0 0 0 0 0 0 ***0 0 0 0.****
•0 0 0 0 0 0 0 0 ***0 0 0 0.****

0 0 0 0 0 0 0 0 ***0 0 0 0.***
0 0 0 0 0 0 0 0 ***0 0 0 0 0 0
0 0 0 0 0 0 0 0 ***0000 0 0
0 0*0*0*0*0*0 0 ******0 0 0

S0 0******* 0 ***** * 0 0 0 00
0.**0 0 0 0"* **** 0 0 0 0 0 0

0 0.************** 0 0 0 0 0 0
0.*** 0 0 0.** **** 0 0 0 0 0 0

•0.*** 0 0 0.** **** 0 0 0 0 0 0
0.*** 0 0 0.** **** 0 0 0 0 0 0
0 0.******* 0.**** 0 0 0 0 0 0

pat-a pat-f

•0 0 0 0 0 0 0 0 0 0.*** 0 0***
0 0 0 0 0 0 0 0 0 0.*** 0 0.***
0 0 0 0 0 0 0 0 0 0.*** 0 0.***

0 0 0 0 0 0 0 0 0 0.*** 0 0.***
***0 0 0 0 0 0 ** 0 0.*** 0 0

• **0 0 0 0 0 0 ** 0 0.*** 0 0
***0 0 0 0 0 0 ** 0 0.*** 0 0
***0 0 0 0 0 0 ** 0 0.*** 0 0
** **0***** 0 0 0 0.*** 0 0.***
** **0******* 0 0 0.*** 0 0.***

S******** 0.*** 0 0 0**** 0 0.***
***0 0 0 0.*** 0 0.*** 0 0.***
***0 0 0 0.** **** 0 0.*** 0 0
***0 0 0 0.** **** 0 0.*** 0 0
***0 0 0 0.** **** 0 0.*** 0 0

0 0 0 0**** 0 0*** 0 0

pat-h pat-m

Figure 3.2: Examples of input patterns.
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0 0 0 0 0 0 0 0 0 00**** 0 0 0
0 0 0 0 0 0 0 0 0 0.******* 0 0

0 0 0 0 0 0 00 0** 0 0 0 0** 0
0 0 0 0 0 0 0 0 ***0 0 0 0.****

00000000 0** 0000**000000000 0*00.
00000000 00***** 000
0 00000000 000*** 000

* *** 0 0 0 0.*** 0 0 0 0 0 0 0 0
0.*** 0 0.*** 0 0 0 0 0 0 0 0 0
00******* 0 0 00000000

0 0.******* 0 0 0 0 0 0 0 0 0 0
0 00.******* 00 00000000

00**** 00*** 0 00000000
**** 0 000.*** 00000000
000 0 000000 000000

0000*** 00 000000000
00 0**** 000 00000000
000**** 000 00000000

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

* 000******* 00000000
000******** 00000000000**** 000 00000000
0 0 0.*** 0 0 0 0 0 0 0 0 0 0 0
0 0 0.*** 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
00000000 0 000***
00000000 0 000***
00000000 0 000***
000000030 0 000***

0 0 0 0 0 0 0 0
*0 0 0 0 0 0 0 0

Figure 3.3: Examples of the target patterns

20

m m I 20



33145222
23445521
23345421
45434543
34543454

*0 24332253
33454344
22354233
33145222
23445521

* 23345421
45434543
34543454
24332253
33454344

* 22354233

Figure 3.4: Solution density of target space

net characteristics that may be due to the distribution of the patterns. It appears

that the numbers are not clustered in any particular area.

3.3 Back propagation

Linear activation functions with nmultiple levels can be rolled back into

0 one level. There is, therefore, no gain in using multiple hidden layers to try and

discover dleeper more complex relationship. For back propagation to work, the

function must be continuous and the derivative must exist. With these require-

S menits, linear threshhold functions are also excluded. The activation function for

back propagation is the logistic activation function (Equ. 3.1, Fig. 3.5). This func-

tion allows the most change when in the midrange of its inputs [17]. The node is

* considlered 'undecided' when in that range.
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• Figure 3.5: Logistic activation function for back propagation nets.
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0

1
activationi 1 + e - h i ,  (3.1)

* BP is able to learn different types of functions as alluded to in Chapter 2.

BP can learn signal filtering functions to be used with electrocardiograms (EKG)

[21]. It has also been used with optimizing squashing functions for passing data

0 through narrow bandwidth channels [4].

Back propagation (BP) is a gradient descent technique. Therefore, it will

seek a local minimum. We will look to see if BP gets trapped in a local minimum.

0 Ideally, the net should always be reducing the error level for the net.

The system works in two passes. The first pass is a forward pass from

the inputs to the outputs. During this pass an output is calculated. The second

pass moves from the output back to the inputs. The derivative of the activation

function is used to determine the delta value from the difference between output

and target at each node.

Back propagation learns by passing back an error value which when mul-

tiplied by the input from a previous node determines the change in that weight

0 for that input, Equation 3.2 is the delta rule for use with output units in a back

propagation net. In it you see that we are solving for the weight from j to i.

It is the j portion of the error value that gets changed. The equation is applied

for each node with a connection to the current (i) node. The delta function for

hidden units without an explicit target is shown in Equation 3.3.

deltaij = f;(netj) * (target, - activation,) (3.2)
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* deltapi = f[(netpi * (E deltapk * weightki) (3.3)
k

3.4 Testing

Training levels

* The patterns were tested in groups at each level to determine how much

training was required and what error levels could be achieved. Since bigger groups

and higher levels require much more processing time per cycle than smaller lower

ones, it is important to know if additional training will significantly improve the

performance. Each pattern group was run for 500 training epochs. Error levels

were checked after each epoch, for the first 10, after each 5 for the first 50, and

after each 100 for the first five hundred. Selected groups were also run with

different random seeds to determine the effect of different initial random weights.

The levels were tested on the each of the 6 nets (1, 2, 3, 3out, 4, and 4out). The

final weights were saved for the testing phase.

Pattern testing

* After training, the nets were subjected to a variety of tests. The first

was to test the net with distorted patterns. The strong point of neural nets is to

identify the patterns in spite of noisy, incomplete, or distorted inputs. Incomplete

* patterns were considered to be a subset of the distorted patterns. The patterns

were distorted by flipping random bits from one to zero, and vice versa. The same

mask was used for all patterns. Masks changed 10, 15, and 20% of the bits. Each

of the distorted pattern sets were tested against all 7 group weights, on each of

the six nets.
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* Weight reduction

* Since the size of the nets increases the amount of floating point multipli-

cations, the time required to evaluate the inputs will also be increased. To reduce

the floating point computations, the weights were set to zero if they were close to

zero. Weights were zeroed that were less than or equal to +/- .05, .1, .15, and .2.

The adjusted weights were then retested against clear and distorted patterns.

Speed

By their very nature, nets are large and have many connections. All of

these are floating point values. The nets are cpu time intensive. For this reason,

time tests were run on each size group, on each net to determine the average

time to process one pattern. The system did not allow for an accurate measure

of individual cycles, so 100 epochs were used to average out the inaccuracy of the

timing. Similar tests were run on several Sun work stations to include: Sun 3/280,

Sun 3/60, and Sun 4/110. Time tests were also run on a Vax 8650, and a Vax

8200 both of which run Ultrix (2.4 FT1 on the 8650 and 2.2 on the 8200).
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* Chapter 4

Results
9

O Rumelhart and McClelland did a good job of building almost everything

you could hope for. After a little testing, you find you have more data than ever

expected. This section will layout the significant discoveries of this research. The

p data and graphs are representative of the data and are not intended to show every

case. The examples are not the only time when a specific incident occurred. There

is also a section that will address the problems in greater detail.

4.1 Training curve

There were several interesting things noted about the learning curves.

The first (Fig. 4.1) was a rather uniform and parallel progression of the tss from

small group size to large. The more different patterns you have the harder it

is for the net to get them all correct. This was not always the case. On the

first run of the level two net, several larger groups did better than smaller ones.
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g Figure 4.1: Level 1 training curves, all size groups.
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Specifically, the groups of size 8 and 12 were better than those of sizes 10, 6,

and 4 (Fig. 4.2). The higher level nets (3, 3out, 4, and 4out) performed terribly.

The error never improved significantly. It stayed near the initial level or slightly

increased throughout the entire test. Further study revealed that it did make

one good drop after the first training epoch, then it oscillated about a relatively

straight line.

Two runs of the 10 pattern group in a level 2 net, did not show similar

training curves. This caused some doubt in the validity of the runs. To satisfy

this, multiple tests were run on each size group to insure that the results were in a

normal range. Of 5 tests run, each with a different seed, 4 of the 5 were in a tight

group throughout the entire curve, while the fifth ended the run with an error

more than 4 times the group average (Fig. 4.3). This indicates a serious problem

in choosing a seed. Even though back propagation is a gradient descent technique,

it can have real problems converging. All tests have been rerun to either show

differences in error in similar runs with different seeds or to show general trends

with a specific seed. This seed remained the same for the duration of the tests.

The nets did the majority of the learning in the first 10 epochs based

on the slope of the learning curve. The slopes were nearly flat by 50 epochs,

although there were several instances where there was a late drop (Fig. 4.4). This

can greatly reduce the time to train and test the nets. There may be also be

a reasonable cutoff that can be determined by some heuristic method. Little

additional learning occurred after 100 epochs.

Another curious outcome was that even with a standard seed runs with

more patterns would do better than a run with fewer patterns. This was seen on

several occasions, sometimes the improvement was temporary and the smaller net

did better in the end. Other times the larger net was better the entire time of
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testing. This may be attributable to some targets going against the grain of the

net. It is possible that adding other patterns later may have helped the net to

get over that hurdle. The later patterns in effect gave the net more information

on which to internalize the relationships.

In summarizing the lessons learned concerning the amount of training, we

find that during the initial stages of each run, larger size groups caused higher

error rates. Each size group, generally, converged uniformly. However, in the

later stages, there were instances where larger size groups performed better than

smaller. Most of the training was completed by the 50th training epoch. Little

additional improvement occured after the 100th epoch. The first 10 epochs gave

you a good idea of how the rest of the graph would behave. The section on

momentum provides some improvements and insights to the problems of the net's

ability to reach a minimum.

4.2 Momentum

The most significant discovery was found in the higher level nets (levels 3

and 4). Initially the problem with the higher levels not improving was attributed

to 'simpler is better' - major discovery. That was not likely, though. Higher level

nets can duplicate lower nets. A higher net can do the same as the level 2 in the

second level, and then just pipe the solution through. So, higher level nets should

be better, up to some limit where the time required to train so overwhelms the

gain that it is no longer cost effective. It was also a concern that there was just

too much to sort through to always find optimal solutions. There are so many

weights. If they are all allowed to change a little, it is no wonder that they might
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0cancel out the progress made by other changes and cause oscillation.

The higher level nets did not perform well, as far as tss goes. There was

one good drop on the second epoch and then the error rate was headed back

0 up. Throughout the training the higher nets in the larger groups would oscillate.

They did not produce any kind of trend that would reduce the error. And, in

fact, the error curves were slightly increasing (14 patterns curve, Fig. 4.5). Thus

arises one drawback to neural nets: they can get caught traversing error ridges

and never get headed down into the reasonable solution space. This leads to a

future topic of heuristic methods to determine seeds/biases, weight changing and

training strategies. It might, also, be better to train on one pattern at a time,

and then train the next, or in some way over-emphasize patterns that are harder

to learn.

0 More reading found the almost unnoticed parameter momentum. This low

visibility variable, momentum, gives the deltai the actual amount of the change

to the weighti (Equ. 4.1). Tests showed vast improvements on the 14-pattern

groups, when the values for momentum went from the default of .9 to .6 and .3

(Fig. 4.6, 4.7, and 4.8). Even these values were not sufficient for nets of level 6 or

7. At momentum = .3, a level 7 net oscillated severely (Fig. 4.9).

deltaj, = momentum * f (netj * weightji) (4.1)

* 4.3 Discrepancy in the tss

The following shows relative distortion of the output patterns. The right

* sides are the targets. The lefts are the outputs. The tss shows the relative error.
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Figure 4.7: Varying momentum in level 3.
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This error is not always a good measure. The first and second, output-i and

output-m (Fig. 4.10), show close errors, but the first is really not distinguishable.

In the second, you can see the resemblance. Notice that although output-b (Fig.

4.11) and outputl (Fig. 4.12) have very large differences in the tss, they don't

appear to be that different from their respective targets. Output-l (Fig. 4.12)

and output-e (Fig. 4.13) also have close error levels, but the former is not near as

distinguishable as the latter.

There appears to be a connection between the high coverage area of pattern

m and the high relative tss. This is based on the fact that with low coverage areas

it is more likely that the O's from the target will match those of the output.

There appears to be a sensitivity of the net toward the area shown in

outputl (Fig. 4.10). Several outputs were distorted toward this general pattern.

The same sensitivity did not exist in the upper block area. The density of the

solution target space does not show a reason for the problem. [See the solution

density pattern in chap 3 (Fig. 3.4).] These patterns have been filtered to remove

some of the values whcre low activations registered to make them more clear. The

blank spaces show the locations that were filtered.

4.4 Changing the percentage of distortion

During this test, patterns were distorted by changing a percentage of the

bits from 0 to 1 and from I to 0. Each 5% changed 6 bits of the pattern. The same
0

bits were changed for each pattern. Selected patterns are shown to demonstrate

two things. First, that the change of a few bits did generally show a gradual

decay in the performance, as expected (Fig. 4.14). Second, there was also a severe

change at times when the few bits were changed (Fig. 4.15). Also note, at times
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tss 12.697

80000000 00000000
00000 000 0 0000000
00000000 00000C00
0 0 0001 000 0 0 00000
00040000 00000000
006500000 00000000
00000000 00000000
00000000 00000000
0 04683 09680 0 **** 0 0 0 0****
0 0 03699361499 0**** 0 0**** 0
0 0 01099 09999 0 0******** 0 0
0 0 7 099489799 0 0******** 0 0
0 0 2779988 099 0 0******** 0 0
5 2 79996 0 057 0**** 0 0**** 0
927999762994269 **** 0 0 0 0****
999 3 1 92197 1 0 0 0 0 0 0 0 0

outputil targetJ

tss 14.9065

99 0 0 0 099 0 0 0 0**** 0 0
099 0 0 099 0 0 0 0**** 0 0

099 1 09999 0 0 **** 0 0**** 0 0
0 0 0099 0 0 0 0 0**** 0 0

0 09999 0 099 0 0 0**** 0 0****
0 09999 0 09999 0 0**** 0 0****

0 099 0 0 09999 0 0**** 0 0****
0 0 0 0 0 0 0 0 0 0**** 0 0***

S0 09999 0 09999 **** 0 0**** 0 0
0 09999 0 09999 **** 0 0**** 0 0
0 09999 0 09999 0 0**** 0 0
0 099 4 0 09999 **** 0 0**** 0 0
0 0 0 09999 0 0 0 0.*** 0 0***

* 9999 0 09999 0 0 0 0**** 0 0****

9999 0 09999 0 0 0 0**** 0 0****
9999 0 09999 0 0 0 0**** 0 0****

outputm target-m

Figure 4.10: Output from level 200.00, patterns i and m (filtered).
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S tss 3.3425
79 0 1 1 5 18782 0 0 0 0****

19361 1 03494 0 0**** 0 0**** 0
0 095949590 0 0 0 0******** 0 0
0 2919282 0 2 0 0 0******** 0 0
0 19693939610 0 0 0******** 0 0
09094 1 28894 0 0**** 0 0**** 0

9171 4 1 3 09987 **** 0 0 0 0****
00010002 000 0 000
0210018291 00000000
11113 5102 000 00 00 0
1 10 10010 00000000

20510000 00000000
0 6 826 0 0 2 0 0 0 0 0 0 0 0 0

25 8 1 1 0 330 0 0 0 0 0 0 0 0
S1 0 1 61424 4 000 000 0 0

0 0 3 1 11615 2 0 0 0 0 0 0 0 0

output-bl target-b

* Figure 4.11: Output from level 220.20, pattern bi (filtered).

tss 4.4685
00000000 00000000
00000000 00000000
01000900 00000000

00000000 00000000
0 0 0 0046 0 0 0 0 0 0 0 0 0
000 000 00000000
00 00000 00000000
0 00000000 00000000
00800000 00000000
0 0 0 0 0 068 0 0 0 0 0 0 0 0

0 0 0 99 09999 0 0******** 0 0
0 0 099999999 0 0******** 0 0

* 0 0 0 09999 099 0 0******** 0 0

0 0 0 99 08395 0 0******** 0 0
0 00 00000000

0000 0 00000000

* outputl2 targeti

Figure 4.12: Output from level 200.20, pattern 12 (filtered).
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0

S

tss 2.2088
0 0 09698 0 0 0 0 0 0**** 0 0 0
0 085999872 0 0 0 0******** 0 0
0 095999997 0 0 0 0******** 0 0

* 99 098 0**** 0 0**** 0
09999 9899 0 0**** 0 0**** 0

6599 9877 **** 0 0 0 0****
8477989896709967

8363829799359587
= 9587 0 0 0 0 0 1 0 0 0 0 0 0 0 0

00 1 10001 00000000
000 100 10 00000000
20002000 00000000
0 1 1 1 0 1 00 00000000
00000000 00000000
20004500 00000000
00000020 00000000

outpuLte2 target-e

Figure 4.13: Output from level 200.20, pattern e2 (filtered).

0
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level 200.00% 200.10% 200.15% 200.20%

zI 0.0000 0.0227 24.686 18.224
z2 0.0000 10.700 6.1002 4.3758
al 0.0003 0.0015 0.0671 7.3241 4-

il 5.0000 5.0123 11.044 12.694
kI 1.0004 1.0008 1.0006 1.0672
ml 14.906 14.913 14.884 15.095
sum pss 20.91 31.65 57.78 58.78
%increase
over prey level - 51 82 2
total % incr - 51 176 181

- outputs shown below (Fig. 4.19, page 47).

Figure 4.14: Pattern error for level 2 (no weights zeroed).

level 210.00% 210.10% 210.15% 210.20%

zI 0.0000 0.0217 24.215 18.232
z2 0.0000 10.976 5.9540 4.1622
al 0.0003 0.0021 0.0785 7.2943
i1 5.0001 5 0124 10.803 12.720
kI 1.0004 1.0007 1.0006 1.0678
ml 14.916 14.922 14.896 15.124
sum pss 20.92 31.93 56.95 58.60
%increase
over prev level - 53 78 3
total incr - 53 172 180

- outputs shown below (Fig. 4.20, pagereffig:pic2).

Figure 4.15: Pattern error for level 2 (weights < +/- .10 zeroed).
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the error improved by changing the bits. Selected patterns zi,z2, al,il,

kl,andml show the range of errors. Notice that there is serious degradation on

al when 6 additional bits were flipped (Fig. 4.14). Based on the theory of graceful

degradation and the fact that this sharp change only happens sporadically, this

would appear to be an unusual and highly sensitive 6-bit change.

This next one is even more unusual than the previous one. You expect to

get more error when you distort the figure more (Fig. 4.15). You do not expect

for the error to go back down when you change the inputs even farther from the

proper pattern. Especially significant is that the two z patterns are very similar

inputs (different bits are flipped), but they have grossly different output errors

(Fig. 4.15, 4.16, 4.17).

* The drastic changes after changing only a few bits leads us to believe that

there is something peculiar about these nets. It is not shown in the figures,

but most patterns followed the what you would consider a normal progression of

error levels. Therefore, the percentage change in the summary line is of lesser

consequence. PSS less than 1 is considered excellent. There is little trouble in

making out the patterns with a pss of 1. After seeing the good results on distorted

patterns, it would be a simple task for another net to polish up the outputs to

make nearly perfect patterns.

From the normal patterns, those that did not make drastic changes, you

* start to see significant changes when 20% of the bits are wrong. This can not be

taken as conclusive, since there are still those enormous errors in some patterns.

Further study needs to determine which bits or combination of bits caused the

high error, and how the net can be trained so as not to be so sensitive to specific
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level 215.00% 215.10% 215.15% 215.20%

z1 0.0001 0.0177 24.210 18.302
* z2 0.0001 10.437 5.9746 4.4909

al 0.0003 0.0030 0.0720 6.9355
il 5.0000 5.0134 10.787 12.701 +-
kl 1.0004 1.0007 1.0005 1.0493
ml 14.905 14.911 14.863 15.111

* sum pss 20.91 31.38 56.91 58.59
%increase
over prey level - 50 81 3
total incr - 50 172 180

S4- - Outputs shown below (Fig. 4.21, page 49).

Figure 4.16: Pattern error for level 2 (weights 5 +/- .15 zeroed).

:0

level 220.00% 220.10% 220.15% 220.20%

zI 0.0000 0.0144 23.389 17.681
z2 0.0000 8.8353 5.5288 4.3050
al 0.0004 0.0050 0.1031 8.2028
il 5.0000 5.0114 10.349 11.966 +-
kl 1.0005 1.0008 1.0007 1.0502
ml 14.891 14.897 14.846 15.061
sum pss 20.9 29.76 55.21 58.27
%increase
over prey level - 42 86 6
total - 42 164 179

-- - Outputs shown below (fig. 4.22, page 50).

Figure 4.17: Pattern error for level 2 (weights 5 +/- .20 zeroed).
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bits. It may help to train the net with barely distorted patterns. However, this

will increase training time by 0 n (where n is the number of additional altered

patterns used for each regular pattern).

* The initial results for level 3 were too bad to even look at. Because of the

high value for momentum the net did everything poorly. If you notice the graph

of level 3 where momentum (Fig. 4.7) equals .9, you will see that severe oscillation

controls the graph and it does not converge to anything useful. Notice that at

momentum equals .3 the graph does converge and converges much better. The

following results show the performance with that value for the momentum and

training of only 60 epochs (Fig. 4.18), whereas all of the other levels were trained

to 500.

Notice that before all of the pattern m's were around 14 and were the

hardest patterns to learn. Here pattern m is less than I for most of the series,

and still less than 2 at 20% distorted. Now, the blank shows the worst error of

this series with the pattern il coming up the next worst. The tss for an entire 14

pattern test is less that 1.

The following series show the progression of output patterns as the inputs

are distorted (Fig. 4.19, 4.20, 4.21, and 4.22). In the labels, the .00, .10, .15, and

* .20 are the percentages of bits that were flipped (i.e. 10%, 15%, 20%). There are

several places where the changing certain bits caused drastic change in the pss.

One (or more) of the bits in the distortion mask must trigger a sensitivity place

in the net. Basically, you see graceful degradation, however there are also some

that are not so graceful. These are all taken from level 2. All levels had these

kind of progressions. These are used as an indicator of an overall problem, not

something peculiar to level 2.
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* level 320.00% 320.10% 320.15% 320.20%

z1 0.0036 1.5857 1.2600 2.0154
z2 0.0036 0.9739 0.6046 0.2186
al 0.0019 0.0186 0.9211 1.2559

* ii 0.0024 0.0366 2.2879 0.7651
k1 0.0012 0.0071 0.0046 1.4771
ml 0.0050 0.0551 0.1387 1.6381
sum pss .0177 2.677 5.217 7.370
%increase

* over prey level - 167 94 41
total - 167 293 637

Figure 4.18: Pattern error for level 3 (no weights zeroed).
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* pat-al

200.00 200.10

tss .003 .0015
0 0 09999 000 0 0 09999 1 0 0
0 099999999 0 0 0 099999999 0 C
0990000990 099000 0990

9999 0 0 0 09999 9999 0 0 0 09999
9999 0 0 0 09999 9999 0 0 0 09999
099 0 0 0 099 0 099 0 0 0 099 1
0 099999999 0 0 0 099999999 0 0
0009999000 0009999002
0000 0000 02000000
00000000 00000000
0 00 0000 00000 000
00000000 00000 O00
00000000 00000000
00000000 00000000
00000000 00000000
00000000 00000000

200.15 200.20
tss 0.0671 7.3241
0 0 09999 1 00 0 0 19999 0 0 1
0 098999999 0 0 0 014999915 0 0
0930000810 06068310200

9999 1 0 0 09999 9999532623 09999
9999 5 1 0 09999 9999303063589999
094 010 3 099 6 020 04554 076 0
0 099999995 0 0 0 128999914 5 0
0 0 09999 0 0 1 0 0 29999 0 0 2
01000000 02000000
00000000 00000000
00 000 000 00000000
00000100 00000000
00000200 00100000
00000010 00000000
00000000 00000000
00000000 00000000

Figure 4.19: Pattern il progression, no weights zeroed.
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pat-z2

210.00 210.10

* tss 0.0000 10.9767
00000000 00000000
00000000 00000000
0 0 0 0 0 0 0 0 0 0 0 0 011 0 0
00000000 00001000
0 0000000 00400000
00000000 00000000
00000 000 000 0 000
00000000 00000000
0 0 0 0 0 0 0 0 0 0 0 3 05070 0
0 0 0 0 0 0 00 0 0 0 1 0 29166
0 0 0 0 0 0 0 0 0 0 0 4 0 09386
0 0 0 0 0 0 0 0 0 075 015 29698
0 0 0 0 0 0 0 0 0 00299861 024
0 0 0 0 0 0 0 0 8641 0 0 8 0 1 0
0 0 0 0 0 0 00 6517 0 0 499 6 0
0 0 0 0 0 0 0 0 417 0 0 88925 0

210.15 200.20
tss 5.9540 4.1622
0 0000000 00015000
0000 0000 00020000
01000300 012121000
00000000 06630020
0 0 2 0 0 0 1 0 0 532 1 0 551 0
00 1 0 0 0 1 0 0 2 1 0 1 013 0
00100000 101 13030
0 0 0 0 000 0 0 0000 0
0 0 0 0 03162 0 0 0 0 0 06116 0
0 0 0 0 0 37869 0 0 0 020 32037
0 0029 0 03522 0 0 026 0 0 0 0
0 096 0 1 06819 1 028 0 1 0 0 0
0 23044 237 0 2 0 7 882 0 0 0 0

3986 0 0 0 0 8 0 2621 021 0 0 2 0
11 0 0 0 999 9 0 6 0 0 046954654
0 0 0 004821 0 0 0 0 0 0 866 0

Figure 4.20: Pattern z2 progression, weights < +/- .1 zeroed.
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pat i1
215.00 215.10

tss 5.0000 5.0134
0000 0000 0000000 0

00000000 00000000
00000000 00000000
00000000 0 O000000
00000000 00000000
00000000 00000001

• 0000 0000 000 0000 0
0000 0000 000 0000 0
0 09999 0 0 0 0 0 09899 0 1 0 1
0 0 09999 0 099 0 0 19999 0 099
0 0 0 099 09999 0 0 0 199 09999

• 0 0 0 099999999 0 0 0 099999999

0 0 0 09999 099 0 0 0 09999 099
0 0 09999 0 099 0 1 09899 0 199

99 09999 0 0 0 0 99 29999 2 6 0 0

9999 0 0 0 0 0 0 9999 0 0 4 0 1 0

215.15 215.20
tss 10.7871 12.7011

130000600 110000000
0 0 0 0 036 0 0 0 0 0 0 0 0 0 0
0 0 6 0 496 0 0 0 0 0 0 0 0 0 0
00104000 00000000
0 03133 0 1 4 0 0 0 0 4 0 0 0 0
0 545 2 0 01834 0 063 0 0 0 0 0
7 038 0 0 0 144 0 0 0 0 0 0 0 0

S0 0000000 0 O000000
0 09999 0 0 243 0 05487 09579 0
0 0449996 0 099 0 0 05199331099
0 0592599 09999 0 0 01099 09999
0 0 6 099829999 0 0 5 099419799

* 0 U 0 09990 099 0 0 2769984 099

017 29099 2 083 6 1 89996 0 057
994099985543 0 0 9929999867994071

9999 4 164 0 0 0 9999 5 2161796 1

* Figure 4.21: Pattern il progression, weights < +/- .15 zeroed.
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pat-il
220.00 220.10

tss 5.0000 5.0114
0 000000 0 0000 000
0 O0000000 00000 O00
00000000 00000000
00000000 00000000
00000000 00000 O00
0 000 0 000 00000001
00000000 00000000
00000000 00000000
0 09999 0 0 0 0 0 09899 0 1 0 1
0 0 09999 0 099 0 0 19999 0 099
0 0 0 099 09999 0 0 0 199 09999

* 0 0 0 099999999 0 0 0 099999999
0 0 0 09999 099 0 0 1 09999 099
0 0 09999 0 099 0 1 09899 0 199

99 09999 0 0 0 0 99 19999 3 4 0 0
9999 0 0 0 0 0 0 9999 0 0 5 0 1 0

220.15 220.20
tss 10.3496 11.9668

11 0 0 0 0 5 00 11 0 0 0 0 0 0 0
0 0 0 0 040 0 0 0 0 0 0 0 0 0 0
00 4 0 395 0 0 0 0 0 0 0 0 0 0
00203000 00000000
0091370040 00040000
0 435 2 0 01835 0 054 0 0 0 0 0
7 031 0 0 0 144 0 0 0 0 0 0 0 0
0 0 000 000 0 0000 0 0 0
0 09999 0 0 139 0 05691 09370 0
0 0449995 0 099 0 0 0549926 599
0 0552099 09999 0 0 0 899 09999
0 0 5 099889999 0 0 3 099499699

* 0 0 0 09999 099 0 0 1709984 099
012 28999 1 081 4 1 99997 0 062
994099985936 0 0 9923999871984269
9999 3 160 0 0 0 9999 5 2181295 2

* Figure 4.22: Pattern il progression, weights< +/-.2 zeroed.
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4.5 Change from zeroing low weights

There was no direct correlation between the value of the weights that were

zeroed and a significant loss of pattern image. The net sensitivity is much more

critical. It is imperative to know the pixels that will cause severe image failure

• before any of these nets can be useful. First, we see the number of weights that

were zeroed (Fig. 4.23). These are the number of connections that are effectively

eliminated. This is a significant reduction in time to evaluate an input. It does

* not however reduce the training time, because there is no indication of what

to zero until the training is complete. The second figure shows the number of

multiplications that each net normally runs during the training for one epoch of

14 patterns (Fig. 4.24). It will be discussed in the next section. It is shown here to

illustrate the amount of training time, associated with each level. Remember that

it may take from 100 to 500 cycles to insure that you have reached asymptotic

limits of the training curve.

Fig. 4.25 shows the change when you only vary the zeroed values. There is

very little change for any of the patterns, and you have reduced the floating point

* multiplications by 30%. Pattern ml actually improved in some cases by zeroing

the weights. Figure 4.24 shows the total number of floating point multiplications

to test and to train (1 cycle for 1 pattern, all 14 patterns, and 500 epochs).

0

4.6 Is bigger better?

Finally, the answer to the question if bigger is better. Increasing the width

improved the net more than increasing the depth. Even so, you are better off to
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level 2 - 33,152 connections
weights zeroed number zeroed % changed

.10 4447 13

.15 6549 19
.20 8613 25

* level 3 - 49,664 connections
.10 9012 18
.15 13541 27
.20 17943 36

Figure 4.23: Weights zeroed in 2 levels and the percentage of total connections.

* level test training(1 pat) training (14 pats) 500 epochs

1 33152 82817 1.Lm 579m
2 66304 165633 2.3m 1.2b
3 99456 248449 3.5m 1.7b

* 3out 132224 330369 4.6m 2.3b
4 132608 331265 4.6m 2.3b
4out 198144 405105 5.7m 2.8b
5 165760 414081 5.8m 2.9b

* (m - million, b - billion)

Figure 4.24: Number of multiplications.
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* level 200.00% 210.00% 215.00% 220.00%
/ 1 0.0000 0.0000 0.0001 0.0000
z2 0.0000 0.0000 0.0001 0.0000
al 0.0003 0.0003 0.0003 0.0004
i1 5.0000 5.0001 5.0000 5.0000

0 kl 1.0004 1.0004 1.0004 1.0005
ml 14.906 14.916 14.905 14.891
sum pss 20.91 21.01 20.91 20.9
%increase
over prev level - .4 -.4 .4

* total incr - .4 0 .4

Figure 4.25: Increasing the zeroes for level 2.

get another level deeper, because you use less cpu time than in adding a level

than from widening (Fig. 4.24). Increasing the width of the net did improve the

performance over the net that was deeper. With the time required to train the

net, you could use a still deeper (higher level)net that would perform better. Look

at Fig. 4.26, under columns 300.00 and 3outOO.00. The wider net (3outOO.00) did

better than the deeper net (300.00) The wider net did better than the next level

* (400.00), but at greater cost. The floating point multiplications for "level 3out"

were actually higher than for "level 4".

0
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level 100.00 200.00 300.00 3outOO.00 400.00 4outOO.00
zI 0.0274 0.0000 0.0234 0.0036 0.0027 0.0013
z2 0.0274 0.0000 0.0234 0.0036 0.0027 0.0013
al 8.0000 0.0003 0.0337 0.0019 0.0034 0.0010
ii 2.0005 5.0000 0.0688 0.0024 0.0070 0.0018
ki 10.000 1.0004 0.0322 0.0012 0.0035 0.0008
ml 46.000 14.906 0.1353 0.0050 0.0104 0.0025
sum pss 66.06 20.97 .3168 .0177 .0297 .0087
% reduction
over prev level - 68 98 94 -69 71

Figure 4.26: Progression for levels 1-4.

5
0

0
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* Chapter 5

Summary and Future Work

0_

* This chapter is made up of two main section. The first will provide the

overall summary of the results. This will give you the short synopsis of the results

from chapter 4. Things that are of a follow-on nature from this study for the near

* future, are located with the summary. The second section is the ' what's next '

part. It will, also, give a brief look to the more distant future of things that will

be needed in the long term.

0

5.1 Summary

Momentum - One of the most critical elements in reducing total training error

and the effectiveness of the entire system. With momentum = .3, total error

for an entire group was less than the largest single pattern error. There needs

to be found a value, set of values, or rule of thumb to describe the optimum

0 momentum for the entire series of nets.
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Seed - The second critical value is the seed. One seed was found to be the cause

of serious deviation from the training curve of the other 5 runs. Final error

was 4 times that of the rest of the runs. The other runs were extremely

tight in the graph of the training error. This was run before momentum was

found to be so critical and may well be a mute point after that is solved.

Sensitivity - A few patterns were grossly distorted after a small change in some

parameter or flipping some bits. There is an unusual sensitivity that does

not allow for graceful degradation for all patterns. These patterns decayed

gracefully up to a point, but then something, as yet unexplained, occurred.

Training with distorted patterns may help overcome this problem. This

indicates that a few bits may control a portion of the net, and disallow

graceful degradation. Training that uses mildly distorted patterns may help

fix this problem.

4
Training cycles - More patterns proportionately increase the error during the

first few training cycles. Larger size groups have surpassed smaller in total

error in several places in the training curves. Most of the training occured

in the first 10 epochs, with little additional improvement after 100 epochs.

Since training error can increase after more training, a heuristic is needed

to determine when to stop the training.

Pattern distortion - Outputs showed gradual degradation through the 20went

from less than I (tss) to more than 20 over one increase in distortion. There

were other patterns that would improve after distortion was increased even

more. This leads me to believe that the nets were highly sensitive to specific

bits. Training with mildly distorted patterns may also improve performance

hiere,
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Weight adjustment - Similar results as were noticed with pattern distortion,

including the gross changes in tss. Other than the patterns in question for

net sensitivity, 30% of the weights could be zeroed out with little loss of

performance. Weights were zeroed where the absolute value was less than

or equal .20 .

Time - Time studies showed that it takes one hour of cpu time to train a level

3 net o i a 14-pattern group. The nets used were intended to be simple and

flexible. Therefore, little should be done initially to improve the times until

such time that the other problems are resolved.

5.2 Future Work

The most significant improvement for this area is the development of a

parallel implementation for the nets. Parallel implementations have been used,

but are not readily available. That would speed up the research process immensely.

You could almost see the net learning. Problems could be addressed more quickly

and solutions initiated. By the time, you have waited hours to get a little bit

of data, you have lost the train of thought that you intended to explore. At the

present, you can do little more than get it started and let it run all day.
0

One of the problems, of a study of this depth, is that the training cycles

take so long. For a significant statistical analysis, you need many more runs of

each size group and on each net. A small sample gives you a feel for what you can

expect, but it is not statistically valid. Each of these tests should be run for at

least 100 training runs, if not 1000. Each run should be for 1000 cycles, to insure

there was not a late drop. This would give you enough of a sample to make a

solid analysis. Be aware that the memory requirements to save the weights for
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the other testing would be enormous.

These tests showed by force what the problems and faults were for the nets.

Mathematical proofs are needed to give final and complete results. It is but a first

0 step to note the behavior of the net, now we need to show more than speculation

as to the causes.

Heuristics methods for determining the seed for the initial random weights

0 or for knowing when to stop training and change seeds are needed. The time

required to fully train a net is wasted if the net performs poorly. Such a method

would allow the user to cut his losses earlier.
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